Existence of strictly positive solutions for sublinear elliptic problems in bounded domains
Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and p ∈ (0,1). We study existence and nonex...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/20549 https://doi.org/10.1515/ans-2014-0207 |
| Aporte de: |
| Sumario: | Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and
unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing
continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and
p ∈ (0,1). We study existence and nonexistence of strictly positive solutions for nonlinear
elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω. |
|---|