Crop yield estimation using satellite images: comparison of linear and non-linear models
Development of models for crop yield prediction using remote sensing allows accurate, reliable and timely estimations over large areas. articularly, this information is necessary to ensure the adequacy of a nation’s food supply as well as to aid policy makers and farmers. In Argentina, soybean (Glyc...
Guardado en:
| Autores principales: | Sayago, S., Bocco, M. |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Inglés |
| Publicado: |
Facultad de Ciencias Agropecuarias
2018
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/agris/article/view/20447 |
| Aporte de: |
Ejemplares similares
-
Estimating soybean yield using time series of anomalies in vegetation indices from MODIS
por: Nolasco, Miguel, et al.
Publicado: (2021) -
Robust and sparse estimators for linear regression models
por: Smucler, E., et al. -
Robust and sparse estimators for linear regression models
Publicado: (2017) -
Comparison of neural networks. an estimation model in yield of monoglycerides from biodiesel by-product
por: Álvarez, Dolores María Eugenia, et al.
Publicado: (2021) -
Estimation of the marginal location under a partially linear model with missing responses
por: Bianco, A., et al.