Spatio-temporal data managment of satellite imagery

The management of long time series data of Normalized Difference Vegetation Index (NDVI) over large territories demands efficient use of computational resources. This paper discusses and illustrates strategies for the construction and statistical processing of massive spatio-temporal databases from...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castillo Moine, Matías Alejandro, Balzarini, Mónica Graciela
Formato: Artículo revista
Lenguaje:Español
Publicado: Facultad de Ciencias Agropecuarias 2019
Materias:
GIS
SIG
Acceso en línea:https://revistas.unc.edu.ar/index.php/agris/article/view/23410
Aporte de:
Descripción
Sumario:The management of long time series data of Normalized Difference Vegetation Index (NDVI) over large territories demands efficient use of computational resources. This paper discusses and illustrates strategies for the construction and statistical processing of massive spatio-temporal databases from satellite images. The implementation of a data management protocol in the R software is detailed, with implementation of parallel computations. The results show that the concept divide-apply-combine was adequate to filter and classify long time series of NDVI territorially distributed at a regional scale.