Using Reinforcement Sensitivity Theory to Predict COVID-19 Vulnerability: Data from Students in México and the US
The study assessed the capacity of revised Reinforcement Sensitivity Theory to predict COVID-19 vulnerability and outcome. A convenience sample of 1033 undergraduate students from Mexico and the US answered the RST-PQ and a COVID-19 symptom checklist. Data showed that FFFS and BIS are direct and sig...
Guardado en:
| Autores principales: | Pulido, Marco, Arjona, Daniel, Avilés, Paola, López, Valeria, Martínez, Regina, Santoyo, Sofía, Vergara, Sofía |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Inglés |
| Publicado: |
Instituto de Investigaciones Psicológicas
2024
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/racc/article/view/42563 |
| Aporte de: |
Ejemplares similares
-
Construct and Concurrent Validity of two Scales Designed to Measure Reinforcement Sensitivity
por: Pulido, Marco, et al.
Publicado: (2023) -
Effects of Feedback Interventions on Letter-String Problem Solving by Analogical Transfer : Effects of feedback interventions.
por: Pulido, Marco, et al.
Publicado: (2023) -
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
por: López Steinmetz, Lorena Cecilia, et al.
Publicado: (2024) -
¿Quedarse?, ¿volver?, ¿conectarse? Movilidades/inmovilidades espaciales y experiencias de cursado en pandemia en la Universidad Nacional de Entre Ríos
por: Schmuck, María Emilia, et al.
Publicado: (2023) -
Software Reliability models for the first stage of Software Projects
por: Barraza, Néstor Rubén, et al.
Publicado: (2018)