Clustering gene expression data with a penalized graph-based metric
Background The search for cluster structure in microarray datasets is a base problem for the so-called "-omic sciences". A difficult problem in clustering is how to handle data with a manifold structure, i.e. data that is not shaped in the form of compact clouds of points, forming arbitra...
Guardado en:
| Autores principales: | Bayá, Ariel E., Granitto, Pablo M. |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
BioMed Central
2012
|
| Acceso en línea: | http://hdl.handle.net/2133/1859 http://hdl.handle.net/2133/1859 |
| Aporte de: |
Ejemplares similares
-
Clustering gene expression data with the PKNNG metric
por: Bayá, Ariel E., et al.
Publicado: (2008) -
Clustering for metric graphs using the p-Laplacian
por: Del Pezzo, L.M
Publicado: (2016) -
Clustering for metric graphs using the p-Laplacian
por: Del Pezzo, L.M., et al. -
Clustering for metric graphs using the p-Laplacian
por: Del Pezzo, Leandro M., et al.
Publicado: (2016) -
A novel clustering approach for biological data using a new distance based on Gene Ontology
por: Leale, Guillermo, et al.
Publicado: (2013)