Grupos de isometrías de grupos de Lie tridimensionales

Dado un grupo de Lie G, una métrica invariante a izquierda g en G queda determinada por la elección de un producto interno en el álgebra de Lie g de G, que usualmente se denota también por g. Si g0 es otra métrica invariante a izquierda en G, decimos que g0 es equivalente a g si existe un automorfis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cosgaya, Ana
Otros Autores: Reggiani, Silvio
Formato: bachelorThesis Tésis de Grado
Lenguaje:Español
Publicado: 2022
Materias:
Acceso en línea:http://hdl.handle.net/2133/23721
http://hdl.handle.net/2133/23721
Aporte de:
Descripción
Sumario:Dado un grupo de Lie G, una métrica invariante a izquierda g en G queda determinada por la elección de un producto interno en el álgebra de Lie g de G, que usualmente se denota también por g. Si g0 es otra métrica invariante a izquierda en G, decimos que g0 es equivalente a g si existe un automorfismo φ 2 Aut G tal que φ∗g = g0. El problema de la determinación de todas las métricas invariantes a izquierda en G salvo automorfismo isométrico es un problema abierto y muy difícil en el área de la geometría homogénea. De hecho, incluso en dimensiones bajas no se conoce la solución por completo y cualquier resultado parcial resulta interesante. En este trabajo se estudian los contenidos básicos para plantear el problema de forma precisa. Estos tópicos en general no forman parte de los planes de estudio de las licenciaturas en matemática e incluyen: los conceptos de variedad diferenciable y grupo de Lie, el concepto de álgebra de Lie de un grupo de Lie y la correspondencia subgrupo/ subálgebra.