A note on Gaussian integrals over para-Grassmann variables

We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θ<sup>p+1</sup> = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cugliandolo, Leticia Fernanda, Lozano, Gustavo Sergio, Moreno, Enrique Francisco, Schaposnik, Fidel Arturo
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2004
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/100957
https://ri.conicet.gov.ar/11336/73421
Aporte de:
Descripción
Sumario:We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θ<sup>p+1</sup> = 0 with p = 1 (p > 1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL(n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems.