Clique coloring B1-EPG graphs
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a gr...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Comunicacion |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/103756 |
| Aporte de: |
| Sumario: | We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable.
Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. |
|---|