Casimir energy for a scalar field with a frequency dependent boundary condition

We consider the vacuum energy for a scalar field subject to a frequency dependent boundary condition. The effect of a frequency cutoff is described in terms of an incomplete ζ function. The use of the Debye asymptotic expansion for Bessel functions allows us to determine the dominant (volume, area,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Falomir, Horacio Alberto, Rebora, Karin Guillermina, Loewe, M.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2000
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/104404
http://hdl.handle.net/11336/98150
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.025015
Aporte de:
Descripción
Sumario:We consider the vacuum energy for a scalar field subject to a frequency dependent boundary condition. The effect of a frequency cutoff is described in terms of an incomplete ζ function. The use of the Debye asymptotic expansion for Bessel functions allows us to determine the dominant (volume, area, ...) terms in the Casimir energy. The possible interest of this kind of model for dielectric media (and its application to sonoluminescence) is also discussed.