Design, synthesis and biological evaluation of N-substituted α-hydroxyimides and 1,2,3-oxathiazolidine-4-one-2,2-dioxides with anticonvulsant activity
In this investigation, we studied a family of compounds with an oxathiazolidine-4-one-2,2-dioxide skeleton and their amide synthetic precursors as new anticonvulsant drugs. The cyclic structures were synthesized using a three-step protocol that include solvent-free reactions and microwave-assisted h...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/107975 http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6713207&blobtype=pdf https://www.tandfonline.com/doi/full/10.1080/14756366.2019.1651722 |
| Aporte de: |
| Sumario: | In this investigation, we studied a family of compounds with an oxathiazolidine-4-one-2,2-dioxide skeleton and their amide synthetic precursors as new anticonvulsant drugs. The cyclic structures were synthesized using a three-step protocol that include solvent-free reactions and microwave-assisted heating. The compounds were tested <i>in vivo</i> through maximal electroshock seizure test in mice. All the structures showed activity at the lower doses tested (30 mg/Kg) and no signs of neurotoxicity were detected. Compound encoded as 1g displayed strong anticonvulsant effects in comparison with known anticonvulsants (ED<sup>50</sup> = 29 mg/Kg). First approximations about the mechanisms of action of the cyclic structures were proposed by docking simulations and <i>in vitro</i> assays against sodium channels (patch clamp methods). |
|---|