Equilibrium and dynamical behavior in the Vicsek model for self-propelled particles under shear
The effects of an externally imposed linear shear profile in the Vicsek model of self-propelled particles is investigated via computer simulations. We find that the applied field changes in a relevant way both the equilibrium and dynamical properties of the original model. Indeed, short time dynamic...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/114723 |
| Aporte de: |
| Sumario: | The effects of an externally imposed linear shear profile in the Vicsek model of self-propelled particles is investigated via computer simulations. We find that the applied field changes in a relevant way both the equilibrium and dynamical properties of the original model. Indeed, short time dynamics analysis shows that the order-disordered phase transition disappears under shear, because the flow acts as a symmetry breaking field. Moreover, the coarsening of particle domains is arrested at a characteristic length-scale inversely proportional to shear rate. A generalization of the original Vicsek model where the velocity of particles depends on the local value of the density is also introduced and shows to affect the domain formation. |
|---|