On four-dimensional Einsteinian gravity, quasitopological gravity, cosmology and black holes

We show that the combination of cubic invariants defining five-dimensional quasitopological gravity, when written in four dimensions, reduce to the version of four-dimensional Einsteinian gravity recently proposed by Arciniega, Edelstein & Jaime, that produces second order equations of motio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cisterna, Adolfo, Grandi, Nicolás Esteban, Oliva, Julio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/118910
Aporte de:
Descripción
Sumario:We show that the combination of cubic invariants defining five-dimensional quasitopological gravity, when written in four dimensions, reduce to the version of four-dimensional Einsteinian gravity recently proposed by Arciniega, Edelstein & Jaime, that produces second order equations of motion in a FLRW ansatz, with a purely geometrical inflationary period. We introduce a quartic version of the four-dimensional Einsteinian theory with similar properties, and study its consequences. In particular we found that there exists a region on the space of parameters which allows for thermodynamically stable black holes, as well as a well-defined cosmology with geometrically driven inflation. We briefly discuss the cosmological inhomogeneities in this setup. We also provide a combination of quintic invariants with those properties.