Non-Hermitian Holography

Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the conce...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arean, Daniel, Landsteiner, Karl, Salazar Landea, Ignacio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123757
Aporte de:
Descripción
Sumario:Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly at finite temperature real black holes solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.