The effect of reproductive system on invasiveness: lessons from South American weevils

Successful invasion of a species into novel, marginal areas often requires the ability to face different ecological characteristics than those prevailing in its native environment. In insects, one of the factors that affect invasiveness is the reproductive system. Unisexuality provides advantages be...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodriguero, Marcela S., Guzmán, Noelia V., Lanteri, Analía Alicia, Confalonieri, Viviana A.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/124348
Aporte de:
Descripción
Sumario:Successful invasion of a species into novel, marginal areas often requires the ability to face different ecological characteristics than those prevailing in its native environment. In insects, one of the factors that affect invasiveness is the reproductive system. Unisexuality provides advantages because a single specimen can initiate a new population. Unisexual reproduction precludes breakup of genetic combinations that promote ecological specialization, although it may limit evolutionary potential for colonization. In order to assess the importance of the reproductive mode in the colonization ability of the weevils that are native to South America, we compared 1 bisexual and 2 parthenogenetic species that expanded their ranges in the last 2 centuries. First, for parthenogenetic species we tested clonality of the sample. Second, we proposed central and marginal areas through phylogeographic and habitat modeling analyses, and identified the pathways of dispersal for each species. Bisexual Naupactus xanthographus (Germar) (Coleoptera: Curculionidae) expanded its range westward to areas with similar environmental constraints than in its native ecosystem. Conversely, parthenogenetic Naupactus leucoloma Boheman and Naupactus cervinus Boheman (both Coleoptera: Curculionidae) invaded other continents where they had low to null predicted habitat suitability. While a single clone of N. cervinus successfully established around the world in areas with apparently adverse conditions, clones of N. leucoloma expanded their range to areas only moderately suitable. We conclude that parthenogenesis is a driver in these particular species for colonization of marginal habitats. However, N. cervinus also would have pre-existing adaptations that allowed it to establish in areas with apparently low potential to survive