Schur Complements in Krein Spaces
The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[S] of A to S is d...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/127101 |
| Aporte de: |
| Sumario: | The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[S] of A to S is defined. The basic properties of A/[S] are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space |
|---|