Robust dual reconstruction systems and fusion frames
We study the duality of reconstruction systems, which are g-frames in a finite dimensional setting. These systems allow redundant linear encoding-decoding schemes implemented by the so-called dual reconstruction systems. We are particularly interested in the projective reconstruction systems that ar...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/127387 |
| Aporte de: |
| Sumario: | We study the duality of reconstruction systems, which are g-frames in a finite dimensional setting. These systems allow redundant linear encoding-decoding schemes implemented by the so-called dual reconstruction systems. We are particularly interested in the projective reconstruction systems that are the analogue of fusion frames in this context. Thus, we focus on dual systems of a fixed projective system that are optimal with respect to erasures of the reconstruction system coefficients involved in the decoding process. We consider two different measures of the reconstruction error in a blind reconstruction algorithm. We also study the projective reconstruction system that best approximate an arbitrary reconstruction system, based on some well known results in matrix theory. Finally, we present a family of examples in which the problem of existence of a dual projective system of a reconstruction system of this type is considered. |
|---|