Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II : Unipotent classes in symplectic groups
We show that Nichols algebras of most simple Yetter–Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply i...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/129363 |
| Aporte de: |
| Sumario: | We show that Nichols algebras of most simple Yetter–Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply it to regular classes in Chevalley and Steinberg groups. |
|---|