Reentrant behavior in Landau–Fermi liquids with spin-split Pomeranchuk instabilities
We study the effects of spin-antisymmetric interactions on the stability of a Landau–Fermi liquid on the square lattice, using the generalized Pomeranchuk method for two-dimensional lattice systems. In particular, we analyze interactions that could induce instabilities of the so-called spin-split ty...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/129664 |
| Aporte de: |
| Sumario: | We study the effects of spin-antisymmetric interactions on the stability of a Landau–Fermi liquid on the square lattice, using the generalized Pomeranchuk method for two-dimensional lattice systems. In particular, we analyze interactions that could induce instabilities of the so-called spin-split type, that is when spin-up and spin-down Fermi surfaces are displaced with respect to each other. The phase space is studied as a function of the strength of the interaction V, the electron chemical potential μ and an external magnetic field h. We find that such interactions produce in general an enhancement of the instability region of the Landau–Fermi liquid. More interestingly, in certain regions of the V–μ phase space, we find a reentrant behavior as a function of the magnetic field h, similar to that found in recent experiments, e.g. in URu₂Si₂ and Sr₃Ru₂O₇. |
|---|