Pole structure of the Hamiltonian ζ-function for a singular potential
We study the pole structure of the ζ-function associated with the Hamiltonian H of a quantum mechanical particle living in the half-line R⁺, subject to the singular potential gx⁻² + x². We show that H admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter g. The...
Guardado en:
| Autores principales: | Falomir, Horacio Alberto, González Pisani, Pablo Andrés, Wipf, Andreas |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2002
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/129682 |
| Aporte de: |
Ejemplares similares
-
Unusual poles of the ζ-functions for some regular singular differential operators
por: Falomir, Horacio Alberto, et al.
Publicado: (2003) -
Composition operators and classical function theory /
por: Shapiro, Joel H.
Publicado: (1993) -
Spectral properties of Hamiltonian operators /
por: Jörgens, Konrad, 1926-
Publicado: (1973) -
A New Example of the Effects of a Singular Background on the Zeta Function
por: Falomir, Horacio Alberto, et al.
Publicado: (2020) -
Spectral theory of operators : Fourteenth School on Operators in Functional Spaces, Novgorod State Pedagogical Institute, 1989 /
Publicado: (1992)