Electrochemical characterization of MWCNT Ni(OH)₂ composites as cathode materials
The hydrothermal method was used to synthesize multi-walled carbon nanotube/nickel hydroxide composites (MWCNT/Ni(OH)<sub>2</sub>). The structure and morphology of the prepared materials were characterized by X-ray diffraction and transmission electron microscopy. The electrochemical per...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/133161 |
| Aporte de: |
| Sumario: | The hydrothermal method was used to synthesize multi-walled carbon nanotube/nickel hydroxide composites (MWCNT/Ni(OH)<sub>2</sub>). The structure and morphology of the prepared materials were characterized by X-ray diffraction and transmission electron microscopy. The electrochemical performance of cathodes prepared with multi-walled carbon nanotubes (MWCNT) loaded into the β-nickel hydroxide materials was investigated employing cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic measurements. It is shown that the cathode active material utilization increases for MWCNT/Ni(OH)<sub>2</sub> obtained after 24 h of hydrothermal synthesis. These composites exhibit a fairly good electrochemical performance as cathode materials. Based on the results, this fact could be associated with the formation of a continuous conductive network structure in the hydroxide matrix. The analyses of impedance data, according to a physicochemical model, allow the improvement of a better understanding of the main structural and physicochemical parameters that control the electrochemical performance of these systems. |
|---|