On the Complexity of Lie Algebras
Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
1987
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/137412 |
| Aporte de: |
| Sumario: | Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V . |
|---|