On the Complexity of Lie Algebras

Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Groote, Hans F. de, Heintz, Joos, Möhler, Stefan, Schmidt, Heinz
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 1987
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/137412
Aporte de:
Descripción
Sumario:Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V .