P-Wave Data Augmentation for Bayès Syndrome Detection

Resulta interesante detectar en una etapa temprana el Síndrome de Bayés debido a sus asociaciones con múltiples afecciones médicas. En el ámbi-to de esta investigación se presenta una estrategia de aumentado de datos de muestras de ECGs brindadas por el equipo del Dr Antonio Bayes. Sobre estos datos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Franco, Lorena G., Escobar, Luis A., Bayés de Luna, Antoni, Massa, José M.
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2021
Materias:
ECG
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/140840
http://50jaiio.sadio.org.ar/pdfs/cais/CAIS-10.pdf
Aporte de:
Descripción
Sumario:Resulta interesante detectar en una etapa temprana el Síndrome de Bayés debido a sus asociaciones con múltiples afecciones médicas. En el ámbi-to de esta investigación se presenta una estrategia de aumentado de datos de muestras de ECGs brindadas por el equipo del Dr Antonio Bayes. Sobre estos datos se aplicaron dos técnicas de clustering: K-Means++ (dos implementacio-nes diferentes) y FAUM. El método se aplicó mediante la herramienta Matlab y también mediante la provista por FAUM. Además, se utilizó FAUM estableciendo una cantidad fija de clusters. Tanto K-Means++ como FAUM se aplica-ron sobre las muestras de cada señal. Inicialmente se contaba con 49 muestras de señales y aplicando las técnicas de aumentado de datos se lograron obtener 2113 señales. Se destaca de los métodos mencionados, la implementación de K-Means++ en el análisis de los agrupamientos. Se logró un F1-Score de 94% en una de sus implementaciones. Los resultados alcanzados son alentadores, ya que el incremento en el conjunto de datos logrado debido al aumentado, hace posible continuar atacando este problema con la aplicación de métodos supervisados que requieran gran cantidad de muestras, como por ejemplo las de aprendizaje profundo.