Intermediate task fine-tuning in cancer classification

Reducing the amount of annotated data required to train predictive models is one of the main challenges in applying artificial intelligence to histopathology. In this paper, we propose a method to enhance the performance of deep learning models trained with limited data in the field of digital patho...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: García, Mario Alejandro, Gramática, Martín Nicolás, Ricapito, Juan Pablo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2023
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/160074
Aporte de:
Descripción
Sumario:Reducing the amount of annotated data required to train predictive models is one of the main challenges in applying artificial intelligence to histopathology. In this paper, we propose a method to enhance the performance of deep learning models trained with limited data in the field of digital pathology. The method relies on a two-stage transfer learning process, where an intermediate model serves as a bridge between a pretrained model on ImageNet and the final cancer classification model. The intermediate model is fine-tuned with a dataset of over 4,000,000 images weakly labeled with clinical data extracted from TCGA program. The model obtained through the proposed method significantly outperforms a model trained with a traditional transfer learning process.