Identificación de candidatas a estrellas Be utilizando redes neuronales

Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de uti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aidelman, Yael Judith, Escudero, Carlos Gabriel, Ronchetti, Franco, Quiroga, Facundo Manuel, Granada, Anahí, Lanzarini, Laura Cristina
Formato: Articulo
Lenguaje:Español
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/166034
Aporte de:
Descripción
Sumario:Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de utilizarlos para identificar automáticamente objetos específicos y luego estudiarlos en detalle. En este trabajo, nos centramos en la identificación fotométrica de estrellas Be, objetos tempranos que presentan la línea Ha en emisión. Este tipo de objeto es de interés para el entendimiento de la evolución de estrellas en alta rotación, y también para el estudio de la física de discos circunestelares. Para su identificación, utilizamos datos fotométricos (VPHAS+, 2MASS y A11WISE) y espectroscópicos (LAMOST), junto con técnicas de aprendizaje automático, como las redes neuronales. Nuestros resultados muestran que utilizar los índices Q libres de enrojecimiento como descriptores, proporcionan una mejora significativa en la identificación fotométrica de estrellas Be.