Be o no Be: esa es la cuestión

Ante la gran cantidad de datos astronómicos disponibles, resulta necesario implementar nuevas estrategias para su análisis. Por ello, las técnicas de aprendizaje automático, en particular las que consisten en aprendizaje supervisado, resultan una herramienta muy útil para tal fin. Para la implementa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aidelman, Yael Judith, Ronchetti, Franco, Quiroga, Facundo Manuel, Granada, Anahí, Escudero, Carlos Gabriel, Lanzarini, Laura Cristina
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2022
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/166767
Aporte de:
Descripción
Sumario:Ante la gran cantidad de datos astronómicos disponibles, resulta necesario implementar nuevas estrategias para su análisis. Por ello, las técnicas de aprendizaje automático, en particular las que consisten en aprendizaje supervisado, resultan una herramienta muy útil para tal fin. Para la implementación de estas estrategias es fundamental contar con un conjunto de datos (data set) etiquetado de manera confiable con el cual entrenar y evaluar el modelo. En este trabajo presentamos un nuevo data set compuesto por las magnitudes u, g, r, Ha, i, J, H, K, WT y W2 para 3 365 790 estrellas de las cuales 3 374 fueron clasificadas en la literatura como Be, 13 214 clasificadas como de tipo espectral B y 2 948 600 con la presencia de emisión en Ha. De estas últimas, solamente 2 758 estrellas fueron reportadas como Be.