Non-thermal radiation associated with massive stars

Massive stars launch powerful, supersonic winds which carry a huge kinetic power. These can generate strong shocks capable of accelerating relativistic particles. Such particles can emit broadband nonthermal radiation. Here we present an overview of the investigations we carried out focused on the n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Palacio, Santiago del, Bosch Ramón, V., Romero, Gustavo Esteban
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/176394
Aporte de:
Descripción
Sumario:Massive stars launch powerful, supersonic winds which carry a huge kinetic power. These can generate strong shocks capable of accelerating relativistic particles. Such particles can emit broadband nonthermal radiation. Here we present an overview of the investigations we carried out focused on the non-thermal emission produced in systems involving massive stars (stellar bubbles, stellar bow shocks, colliding-wind binaries, and microquasars). Our main goal is to determine the cosmic-ray acceleration efficiency in these systems, the conditions upon which they can become non-thermal emitters, and the characteristics of their magnetic fields. We highlight the importance of developing broadband radiation models and their virtuous feedback with multifrequency observational campaigns comprising from radio wavelengths up to high energies (X-rays and 7 rays).