Comparación de algoritmos evolutivos multi-objetivos en un ambiente multicast
En problemas de optimización multi-objetivo, se plantean dos o más funciones objetivo que se optimizarán al mismo tiempo, buscando el conjunto de las mejores soluciones de compromiso, o conjunto Pareto. Este es el caso de la ingeniería de tráfico multicast, que pretende optimizar costo y retardo ent...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2004
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22550 |
| Aporte de: |
| Sumario: | En problemas de optimización multi-objetivo, se plantean dos o más funciones objetivo que se optimizarán al mismo tiempo, buscando el conjunto de las mejores soluciones de compromiso, o conjunto Pareto. Este es el caso de la ingeniería de tráfico multicast, que pretende optimizar costo y retardo entre otras posibles métricas.
Como han sido publicados numerosos Algoritmos Evolutivos Multiobjetivos o MOEAs, no queda aún claro cual es el que presenta mejor desempeño para el problema considerado. Por esta razón, en este trabajo hacemos una comparación experimental entre 5 alternativas: NSGA, NSGA2, SPEA, SPEA2 y cNSGA2, con el fin de determinar cual es la más apropiada para resolver problemas de enrutamiento multicast. Resultados experimentales demuestran que algoritmos como el SPEA y SPEA2 logran un excelente desempeño en este tipo de problemas. |
|---|