Random forest-like strategies for neural networks ensembles contruction
Ensemble methods show improved generalization capabilities that outperforrn those of single larners. lt is generally accepted that, for aggregation to be effective, the individual learners must be as accurate and diverse as possible. An important problem in ensemble learning is then how to find a go...
Guardado en:
| Autores principales: | Namías, Rafael, Granitto, Pablo Miguel |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23485 |
| Aporte de: |
Ejemplares similares
-
Learning and validation in neural network ensembles
por: Granitto, Pablo Miguel, et al.
Publicado: (2001) -
Neural networks applied to wireless communications
por: Stegmayer Machado, Georgina S., et al.
Publicado: (2006) -
A connectivity rating for vertices in networks
por: Abraham, Marco, et al.
Publicado: (2006) -
Invariance and Same-Equivariance Measures for Convolutional Neural Networks
por: Quiroga, Facundo Manuel
Publicado: (2020) -
Improving network generalization through selection of examples
por: Cannas, Sergio A., et al.
Publicado: (1998)