Trading off impact and mutation of knowledge by cooperatively learning robots
We present a socially inspired approach that allows agents in Multi-Agent Systems to speed up their own learning process through communication. Thereby, they are able to trade off impact of knowledge by mutation dependent on the recent performance of the interacting agents. This is inspired by socia...
Guardado en:
| Autores principales: | Richert, Willi, Kleinjohann, Bernd, Kleinjohann, Lisa |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/24019 |
| Aporte de: |
Ejemplares similares
-
A BDI architecture for high level robot deliberation
por: Gottifredi, Sebastián, et al.
Publicado: (2008) -
Hierarchical control in robot soccer using robotic multi-agents
por: Fernández León, José A., et al.
Publicado: (2003) -
Análisis de requerimientos de un sistema multigente de robots que juegan al fútbol
por: Kogan, Pablo, et al.
Publicado: (2006) -
Towards a collaborative experience to generate knowledge: Use of gamification in robotics for Good Agricultural Practices
por: Lombardelli, María Julieta, et al.
Publicado: (2020) -
Sistemas adaptativos multi-agente de soporte al aprendizaje ubicuo y al aprendizaje
colaborativo
por: Durán, Elena Beatriz, et al.
Publicado: (2014)