Segmentación de imágenes de tiempo de vuelo vía clustering espectral co-regularizado

Las cámaras de tiempo de vuelo (TOF) generan dos imágenes simultáneas, una de intensidad y una de rango. Esto permite abordar problemas de segmentación donde la información de intensidad o de rango separadamente es insuficiente para extraer los objetos de interés de la escena 3D. En este artículo se...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lorenti, Luciano, Giacomantone, Javier, De Giusti, Armando Eduardo
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/43905
Aporte de:
Descripción
Sumario:Las cámaras de tiempo de vuelo (TOF) generan dos imágenes simultáneas, una de intensidad y una de rango. Esto permite abordar problemas de segmentación donde la información de intensidad o de rango separadamente es insuficiente para extraer los objetos de interés de la escena 3D. En este artículo se presenta un método de segmentación espectral, que combina información de ambas imágenes. Modificando la matriz de afinidad de cada una de las imágenes en función de la otra, se mejora la segmentación de los objetos de la escena. El método propuesto explota dos mecanismos, el primero orientado a reducir la demanda computacional en el cálculo de autovectores de cada matriz, y el segundo destinado a mejorar el rendimiento de la segmentación. Se presentan resultados experimentales sobre dos conjuntos de imágenes reales, que permiten evaluar el método propuesto.