Técnicas de minería de datos como alternativa a las técnicas estadísticas de discriminación y clasificación multivariadas clásicas

En este trabajo se describe brevemente una de las líneas de investigación que se están llevando a cabo en el Departamento de Matemática de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, en relación a Métodos Multivariados Discriminantes y de Clasificación, y su s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dieser, María Paula, Martín, María Cristina, Schlaps, Erica, Bolaño, Vanina Celeste, Cavero, Lorena Verónica, Irribarra, María de los Ángeles, Solaro, Claudina, Wagner, Laura, Titionik, Diamela
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/45521
Aporte de:
Descripción
Sumario:En este trabajo se describe brevemente una de las líneas de investigación que se están llevando a cabo en el Departamento de Matemática de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional de La Pampa, en relación a Métodos Multivariados Discriminantes y de Clasificación, y su sensibilidad y fiabilidad en la aplicación a diferentes problemas reales o simulados. Si bien el estudio puede centrarse en ciertos métodos que podrían entenderse como clásicos y de una esencia más estadística, es indudable que, en los últimos años, se ha producido un gran crecimiento en las capacidades de generar y recolectar datos. En estos enormes volúmenes de datos, existe gran cantidad de información a la que sería difícil, cuando no imposible, acceder mediante los métodos clásicos. Técnicas propias de la Minería de Datos, posibilitan el análisis de estas masas de datos, en búsqueda de patrones y predicciones, que permitan generar información útil a partir de ellos. Se pretende, entonces, comparar las diferentes técnicas estadísticas clásicas con las propias de la Minería de Datos en las tareas de Discriminación y Clasificación, estableciendo similitudes y diferencias, y analizando las estimaciones que se obtienen con ellas al aplicarlas a problemas reales o simulados.