Aprendizaje multiclase de videoimágenes deportivas con arquitecturas profundas
Las arquitecturas profundas permiten representar de manera compacta funciones altamente no lineales. Entre ellas, las redes convolucionales han adquirido gran protagonismo en la clasificación de imágenes debido a la invarianza traslacional de sus features. Este trabajo propone investigar un abordaje...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/56984 http://45jaiio.sadio.org.ar/sites/default/files/ASAI-16_0.pdf |
| Aporte de: |
| Sumario: | Las arquitecturas profundas permiten representar de manera compacta funciones altamente no lineales. Entre ellas, las redes convolucionales han adquirido gran protagonismo en la clasificación de imágenes debido a la invarianza traslacional de sus features. Este trabajo propone investigar un abordaje naïve para la clasificación de videoimágenes con redes profundas, comparar la performance de redes pre-entrenadas con la de redes ad-hoc y finalmente crear un mecanismo de visualización de la representación interna de la arquitectura. Como ejemplo de aplicación se utilizarán segmentos de videos deportivos con diferentes acciones grupales. |
|---|