Short-term load forecasting by artificial neural networks specified by genetic algorithms – a simulation study over a Brazilian dataset
This paper studies the application of genetic algorithms in helping to select the proper architecture and training parameters, by means of evolutionary simulations done on a series of real load data, for a neural network to be used in electric load forecasting. Particularly, we investigate the appli...
Guardado en:
| Autores principales: | Defilippo, Samuel B., Neto, Guilherme G., Hippert, Henrique S. |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/59405 http://44jaiio.sadio.org.ar/sites/default/files/sio57-66.pdf |
| Aporte de: |
Ejemplares similares
-
Univariate versus Multivariate Models for Short-term Electricity Load Forecasting
por: Neto, Guilherme G., et al.
Publicado: (2015) -
Introduction to the theory of neural computation /
por: Hertz, John
Publicado: (1991) -
Handbook of neural engineering /
Publicado: (2007) -
Stock Returns Forecast : An Examination By Means of Artificial Neural Networks
por: Caride, Martín Iglesias, et al.
Publicado: (2017) -
Neural computing & applications
Publicado: (1993)