Robust Differentiable Functionals for the Additive Hazards Model
In this article, we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, and th...
Guardado en:
| Autores principales: | Álvarez, Enrique Ernesto, Ferrario, Julieta |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/81113 |
| Aporte de: |
Ejemplares similares
-
Review of Bayesian Analysis in Additive Hazards Model
por: Álvarez, Enrique Ernesto, et al.
Publicado: (2019) -
Robust kernel estimators for additive models with dependent observations
por: Bianco, A., et al. -
Robust kernel estimators for additive models with dependent observations
por: Bianco, Ana María, et al.
Publicado: (1998) -
Marginal integration M-estimators for additive models
por: Boente, G., et al. -
Marginal integration M-estimators for additive models
por: Boente, Graciela Lina, et al.
Publicado: (2017)