The compatible Grassmannian
Let A be a positive injective operator in a Hilbert space (H,〈{dot operator},{dot operator}〉), and denote by [ {dot operator}, {dot operator} ] the inner product defined by A: [f, g] = 〈A f, g〉. A closed subspace S⊂H is called A-compatible if there exists a closed complement for S, which is orthogon...
Guardado en:
| Autores principales: | Andruchow, Esteban, Chiumiento, Eduardo Hernán, Di Iorio y Lucero, M. E. |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/85244 |
| Aporte de: |
Ejemplares similares
-
Geometric significance of Toeplitz kernels
por: Andruchow, Esteban, et al.
Publicado: (2018) -
Geometric significance of Toeplitz kernels
por: Andruchow, Esteban, et al.
Publicado: (2024) -
Geometric significance of Toeplitz kernels
por: Andruchow, E., et al. -
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration
por: Rigal, L., et al.
Publicado: (2012) -
Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration
por: Rigal, L., et al.
Publicado: (2012)