Closed-loop Rescheduling using Deep Reinforcement Learning
In this work, a novel approach for generating rescheduling knowledge which can be used in real-time for handling unforeseen events without extra deliberation is presented. For generating such control knowledge, the rescheduling task is modelled and solved as a closed-loop control problem by resortin...
Guardado en:
| Autores principales: | Palombarini, Jorge A., Martínez, Ernesto C. |
|---|---|
| Formato: | Objeto de conferencia Resumen |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/89513 |
| Aporte de: |
Ejemplares similares
-
Real-time Rescheduling of Production Systems using Relational Reinforcement Learning
por: Palombarini, Jorge, et al.
Publicado: (2011) -
Generating rescheduling knowledge using reinforcement learning in a cognitive architecture
por: Palombarini, Jorge, et al.
Publicado: (2014) -
Aerospace Manufacturing Industry: A Simulation-based Decision Support Framework for the Scheduling of Complex Hoist Lines
por: Basán, Natalia P., et al.
Publicado: (2015) -
Automated Task Rescheduling using Relational Markov Decision Processes with Logical State Abstractions
por: Palombarini, Jorge, et al.
Publicado: (2012) -
An agent-based simulation model using decoupled learning rules to (re)schedule multiple projects
por: Tosselli, Laura, et al.
Publicado: (2017)