Stochastic approach to diffusion inside the chaotic layer of a resonance

We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion...

Descripción completa

Detalles Bibliográficos
Autores principales: Mestre, Martín Federico, Bazzani, Armando, Cincotta, Pablo Miguel, Giordano, Claudia Marcela
Formato: Articulo
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/93540
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911
Aporte de:
id I19-R120-10915-93540
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
spellingShingle Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
Mestre, Martín Federico
Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
Stochastic approach to diffusion inside the chaotic layer of a resonance
topic_facet Ciencias Astronómicas
Stochastic Analysis Methods
Numerical Simulations of Chaotic Systems
Classical Transport
description We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics.
format Articulo
Articulo
author Mestre, Martín Federico
Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_facet Mestre, Martín Federico
Bazzani, Armando
Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_sort Mestre, Martín Federico
title Stochastic approach to diffusion inside the chaotic layer of a resonance
title_short Stochastic approach to diffusion inside the chaotic layer of a resonance
title_full Stochastic approach to diffusion inside the chaotic layer of a resonance
title_fullStr Stochastic approach to diffusion inside the chaotic layer of a resonance
title_full_unstemmed Stochastic approach to diffusion inside the chaotic layer of a resonance
title_sort stochastic approach to diffusion inside the chaotic layer of a resonance
publishDate 2014
url http://sedici.unlp.edu.ar/handle/10915/93540
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911
work_keys_str_mv AT mestremartinfederico stochasticapproachtodiffusioninsidethechaoticlayerofaresonance
AT bazzaniarmando stochasticapproachtodiffusioninsidethechaoticlayerofaresonance
AT cincottapablomiguel stochasticapproachtodiffusioninsidethechaoticlayerofaresonance
AT giordanoclaudiamarcela stochasticapproachtodiffusioninsidethechaoticlayerofaresonance
bdutipo_str Repositorios
_version_ 1764820491286085634