Stochastic approach to diffusion inside the chaotic layer of a resonance
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion...
Autores principales: | , , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/93540 http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911 |
Aporte de: |
id |
I19-R120-10915-93540 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport |
spellingShingle |
Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport Mestre, Martín Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela Stochastic approach to diffusion inside the chaotic layer of a resonance |
topic_facet |
Ciencias Astronómicas Stochastic Analysis Methods Numerical Simulations of Chaotic Systems Classical Transport |
description |
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a seminumerical method to compute the diffusion coefficient. We study two cases corresponding to a thick and a thin chaotic layer in the SM phase space and we discuss a related conjecture stated in the past. In the first case, the numerically computed probability density function for the action I is well interpolated by the solution of a Fokker-Planck (FP) equation, whereas it presents a nonconstant time shift with respect to the concomitant FP solution in the second case suggesting the presence of an anomalous diffusion time scale. The explicit calculation of a diffusion coefficient for a 4D symplectic map can be useful to understand the slow diffusion observed in celestial mechanics and accelerator physics. |
format |
Articulo Articulo |
author |
Mestre, Martín Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author_facet |
Mestre, Martín Federico Bazzani, Armando Cincotta, Pablo Miguel Giordano, Claudia Marcela |
author_sort |
Mestre, Martín Federico |
title |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_short |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_full |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_fullStr |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_full_unstemmed |
Stochastic approach to diffusion inside the chaotic layer of a resonance |
title_sort |
stochastic approach to diffusion inside the chaotic layer of a resonance |
publishDate |
2014 |
url |
http://sedici.unlp.edu.ar/handle/10915/93540 http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012911 |
work_keys_str_mv |
AT mestremartinfederico stochasticapproachtodiffusioninsidethechaoticlayerofaresonance AT bazzaniarmando stochasticapproachtodiffusioninsidethechaoticlayerofaresonance AT cincottapablomiguel stochasticapproachtodiffusioninsidethechaoticlayerofaresonance AT giordanoclaudiamarcela stochasticapproachtodiffusioninsidethechaoticlayerofaresonance |
bdutipo_str |
Repositorios |
_version_ |
1764820491286085634 |