Scaling and width distributions of parity-conserving interfaces
We present an alternative finite-size approach to a set of parity-conserving interfaces involving attachment, dissociation, and detachment of extended objects in 1+1 dimensions. With the aid of a nonlocal construct introduced by Barma and Dhar in related systems [Phys. Rev. Lett. 73, 2135 (1994)], w...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/95456 https://ri.conicet.gov.ar/11336/23619 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.052408 |
| Aporte de: |
| Sumario: | We present an alternative finite-size approach to a set of parity-conserving interfaces involving attachment, dissociation, and detachment of extended objects in 1+1 dimensions. With the aid of a nonlocal construct introduced by Barma and Dhar in related systems [Phys. Rev. Lett. 73, 2135 (1994)], we circumvent the subdiffusive dynamics and examine close-to-equilibrium aspects of these interfaces by assembling states of much smaller, numerically accessible scales. As a result, roughening exponents, height correlations, and width distributions exhibiting universal scaling functions are evaluated for interfaces virtually grown out of dimers and trimers on large-scale substrates. Dynamic exponents are also studied by finite-size scaling of the spectrum gaps of evolution operators. |
|---|