Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks
This paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained...
Guardado en:
| Autores principales: | Assi, Ali, Beg, Prasad, Beg, Azam, Prasad, V. C. |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9546 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-3.pdf |
| Aporte de: |
Ejemplares similares
-
Implementation of boolean neural networks on parallel computers
por: Carvalho, Andre Carlos Ponce de Leon Ferreira de, et al.
Publicado: (1996) -
A low communication overhead parallel implementation of the back-propagation algorithm
por: Alfonso, Marcelo, et al.
Publicado: (2000) -
Monadic symmetric Boolean algebras /
por: Abad, Manuel
Publicado: (1989) -
A parallel approach for backpropagation learning of neural networks
por: Crespo, María Liz, et al.
Publicado: (1999) -
Problems and new solutions in the boolean domain /
Publicado: (2016)