On finite-dimensional copointed Hopf algebras over dihedral groups

We classify all finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero such that its coradical is isomorphic to the algebra of functions k<sup>D<sub>m</sub></sup> over a dihedral group D<sub>m</sub>, with m = 4a ≥ 12. We obtain...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fantino, Fernando Amado, García, Gastón Andrés, Mastnak, Mitja
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/97732
https://ri.conicet.gov.ar/11336/83342
Aporte de:
Descripción
Sumario:We classify all finite-dimensional Hopf algebras over an algebraically closed field of characteristic zero such that its coradical is isomorphic to the algebra of functions k<sup>D<sub>m</sub></sup> over a dihedral group D<sub>m</sub>, with m = 4a ≥ 12. We obtain this classification by means of the lifting method, where we use cohomology theory to determine all possible deformations. Our result provides an infinite family of new examples of finite-dimensional copointed Hopf algebras over dihedral groups.