Crystal structure, physicochemical properties, Hirshfeld surface analysis and antibacterial activity assays of transition metal complexes of 6-methoxyquinoline

Five monomeric complexes of Co(ii), Cu(ii), Ni(ii), Zn(ii) and Ag(i) with 6-methoxyquinoline (6-MeOQ) as ligand have been prepared, and their crystal structures have been determined by single X-ray diffractions. The Cu(ii), Ni(ii) and Zn(ii) complexes are formulated as M(6-MeOQ) 2 Cl 2 , completing...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Villa Pérez, Cristian, Ortega, I.C., Vélez Macías, Andrea, Payán, A. M., Echeverría, Gustavo Alberto, Soria, Delia Beatriz, Valencia Uribe, Gloria Cristina
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/97851
https://ri.conicet.gov.ar/11336/87542
https://pubs.rsc.org/en/content/articlelanding/2018/NJ/C8NJ00661J#!divAbstract
Aporte de:
Descripción
Sumario:Five monomeric complexes of Co(ii), Cu(ii), Ni(ii), Zn(ii) and Ag(i) with 6-methoxyquinoline (6-MeOQ) as ligand have been prepared, and their crystal structures have been determined by single X-ray diffractions. The Cu(ii), Ni(ii) and Zn(ii) complexes are formulated as M(6-MeOQ) 2 Cl 2 , completing MN 2 Cl 2 coordination spheres. On the other hand, Co(ii) and Ag(i) compounds are ionic with formulae [Ag(6-MeOQ) 2 ] + NO 3 - and H(6-MeOQ) + [Co(6-MeOQ)Cl 3 ] - (where H(6-MeOQ) + is the protonated ligand). Hirshfeld surface analysis was employed to study the intermolecular interactions in the crystal lattices and from these studies it was found that π-stacking contacts play an important role. Besides, the complexes have been characterized by FTIR, UV-visible and emission spectroscopies. The singlet oxygen production and fluorescence quantum yields were measured for all the complexes employing steady-state methodologies. Finally, the antibacterial activity of the complexes was screened against both Gram-positive and Gram-negative bacteria.