Estudio teórico de las propiedades electrónicas y de la actividad catalítica de partículas de oro
Los óxidos de nitrógeno, comúnmente llamados NOx, han sido objeto de estudio en numerosos trabajos relacionados con el medio ambiente, puesto que constituyen una de las principales fuentes de contaminación del aire que existen en la actualidad. Estos provienen principalmente de los automóviles, y...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | tesis doctoral |
| Lenguaje: | Español |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://repositoriodigital.uns.edu.ar/handle/123456789/2468 |
| Aporte de: |
| Sumario: | Los óxidos de nitrógeno, comúnmente llamados NOx, han sido objeto de estudio en
numerosos trabajos relacionados con el medio ambiente, puesto que constituyen una de
las principales fuentes de contaminación del aire que existen en la actualidad. Estos
provienen principalmente de los automóviles, y en la atmósfera contribuyen a la formación
de smog y lluvia ácida. Una de las formas para disminuir dicha contaminación es convertir
los ya mencionados NOx en especies inocuas como N2 y O2. Una de las reacciones más
importantes de reducción de estas especies tiene lugar en los caños de escape de los
autos a través de un convertidor catalítico, donde además de producirse la deseada
eliminación de los NOx, también convierten otras especies contaminantes, como CO o
hidrocarburos en CO2 y H2O. Sin embargo, los metales utilizados en el convertidor catalítico
son caros y realmente escasos.
El oro es tradicionalmente considerado como un metal con propiedades catalíticas
muy pobres. Sus caras cristalinas son químicamente inertes a la mayoría de las moléculas
gaseosas. No obstante, cuando trabajamos a escala nanométrica se observan notables
cambios en su estructura electrónica tornándose altamente reactivo, especialmente a
temperatura ambiente. Se ha visto que cataliza varias reacciones relacionadas a la
industria química y a la protección del medio ambiente.
En este trabajo de tesis se estudia mediante métodos químico-cuánticos la
adsorción de NO en partículas de Au tanto libres como soportadas, así como la formación
de dímeros N2O2 en las mismas partículas como posibles intermediarios durante la
reducción de NO. Primeramente se estudiaron los sitios activos y principales propiedades
de las partículas de Au aisladas de escasos átomos (de 1 a 10). Las partículas más
estables resultaron ser las planares. Luego de esto se hicieron interaccionar las mismas
con NO obteniendo un comportamiento oscilatorio par-impar con máximos en la fuerza del
enlace en sistemas impares, debido a que se produce un acoplamiento entre dos especies
de capa abierta. La formación del dímero de NO fue llevada a cabo posteriormente
obteniendo un comportamiento similar que con el monómero pero más pronunciado, debido
principalmente a una mayor transferencia electrónica hacia el dímero por parte de las
partículas con número de átomos de Au impar, acortando el enlace N-N y por lo tanto
aumentando la fuerza de interacción en el mismo. Las partículas más activas resultaron ser
las de 5, 7 y 9 átomos. Posteriormente, se modelaron los dos mecanismos propuestos para
la ruptura del enlace N-O, tanto a través de la disociación directa como a través de la
formación del dímero de NO, resultando este último caso mucho más favorable por tener
barreras de activación sustancialmente más bajas. Una vez analizados los resultados correspondientes a partículas de Au en estado libre, en la segunda parte de la tesis se estudió la capacidad adsortiva y reactiva de dichas partículas soportadas en superficies de goethita hidratada y parcialmente deshidratada. La
goethita (α-FeOOH) es un oxohidróxido de hierro usado como adsorbente y como soporte
de catalizadores. Estudiamos la estructura geométrica y electrónica de partículas de Au de
hasta 5 átomos en la cara (110) a traves del método del funcional de la densidad (DFT)
usando condiciones periódicas. Se obtuvieron las partículas más estables en la superficie
sin hidroxilar, debido a la alta reactividad de los O superficiales no saturados que posee.
Las partículas de Au3, Au4 y Au5 presentan una particular estabilidad debido a la generación
de un efecto de polarización de la nube electrónica ocasionada por la interacción de la
partícula metálica con la superficie del soporte. Sobre esta superficie las partículas son
positivas con valores que llegan a tener una carga de 0.7e. Por su parte, los agregados de
Au sobre la superficie hidratada están ligados al soporte más débilmente y su carga es
levemente negativa. Se ha escogido a la partícula de Au5 soportada como prototipo para estudiar la
adsorción y reacción de NO. Se modelaron dos situaciones para comparar los mecanismos
de ruptura del enlace N-O. Se observó que la disociación de este enlace vía formación del
dímero de NO requiere mucha menor energía que la ruptura directa. Además, usar una
partícula anclada a un soporte cambia la termodinámica de la reacción, ya que la misma
pasa de ser endotérmica para el caso de la partícula de Au5 libre en la ruptura vía dímero, a
exotérmica para el caso soportado a través del mismo mecanismo. |
|---|