Cyclic homology of Hopf crossed products
We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A #f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of re...
Guardado en:
Autores principales: | Carboni, G., Guccione, J.A., Guccione, J.J. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v223_n3_p840_Carboni https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v223_n3_p840_Carboni_oai |
Aporte de: |
Ejemplares similares
-
Cyclic homology of Hopf crossed products
por: Carboni, G., et al.
Publicado: (2010) -
Cyclic homology of Hopf crossed products
por: Carboni, G., et al. -
Cyclic homology of Hopf crossed products
por: Carboni, Graciela, et al.
Publicado: (2010) -
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
por: Carboni, G., et al.
Publicado: (2012) -
Cyclic homology of Brzeziński's crossed products and of braided Hopf crossed products
por: Carboni, G., et al.