Bass' NK groups and cdh-fibrant Hochschild homology
The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass&...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2010
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00209910_v181_n2_p421_Cortinas_oai |
Aporte de: |
id |
I28-R145-paper_00209910_v181_n2_p421_Cortinas_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00209910_v181_n2_p421_Cortinas_oai2024-08-16 Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. 2010 The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn(R[t]) implies Kn(R)=Kn(R[t1,t2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general. © 2010 The Author(s). Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Invent. Math. 2010;181(2):421-448 Bass' NK groups and cdh-fibrant Hochschild homology info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00209910_v181_n2_p421_Cortinas_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn(R[t]) implies Kn(R)=Kn(R[t1,t2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general. © 2010 The Author(s). |
format |
Artículo Artículo publishedVersion |
author |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
spellingShingle |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. Bass' NK groups and cdh-fibrant Hochschild homology |
author_facet |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
author_sort |
Cortiñas, G. |
title |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_short |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_full |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_fullStr |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_full_unstemmed |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_sort |
bass' nk groups and cdh-fibrant hochschild homology |
publishDate |
2010 |
url |
http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00209910_v181_n2_p421_Cortinas_oai |
work_keys_str_mv |
AT cortinasg bassnkgroupsandcdhfibranthochschildhomology AT haesemeyerc bassnkgroupsandcdhfibranthochschildhomology AT walkerme bassnkgroupsandcdhfibranthochschildhomology AT weibelc bassnkgroupsandcdhfibranthochschildhomology |
_version_ |
1809357058928017408 |