Solutions to a stationary nonlinear Black-Scholes type equation
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, w...
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2002
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v276_n1_p231_Amster_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v276_n1_p231_Amster_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v276_n1_p231_Amster_oai2024-08-16 Amster, P. Averbuj, C.G. Mariani, M.C. 2002 We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Averbuj, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2002;276(1):231-238 Solutions to a stationary nonlinear Black-Scholes type equation info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v276_n1_p231_Amster_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Amster, P. Averbuj, C.G. Mariani, M.C. |
spellingShingle |
Amster, P. Averbuj, C.G. Mariani, M.C. Solutions to a stationary nonlinear Black-Scholes type equation |
author_facet |
Amster, P. Averbuj, C.G. Mariani, M.C. |
author_sort |
Amster, P. |
title |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_short |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_fullStr |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full_unstemmed |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_sort |
solutions to a stationary nonlinear black-scholes type equation |
publishDate |
2002 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v276_n1_p231_Amster_oai |
work_keys_str_mv |
AT amsterp solutionstoastationarynonlinearblackscholestypeequation AT averbujcg solutionstoastationarynonlinearblackscholestypeequation AT marianimc solutionstoastationarynonlinearblackscholestypeequation |
_version_ |
1809356788371292160 |