An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...
Guardado en:
Autores principales: | D'Andrea, C., Hong, H., Krick, T., Szanto, A. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n3_p290_DAndrea_oai |
Aporte de: |
Ejemplares similares
-
An elementary proof of Sylvester's double sums for subresultants
por: D'Andrea, C., et al.
Publicado: (2007) -
An elementary proof of Sylvester's double sums for subresultants
por: D'Andrea, C., et al. -
An elementary proof of Sylvester's double sums for subresultants
por: D'Andrea, Carlos Antonio, et al.
Publicado: (2007) -
Sylvester's double sums: The general case
por: D'Andrea, C., et al.
Publicado: (2009) -
Sylvester's double sums: The general case
por: D'Andrea, C., et al.