Counting solutions to binomial complete intersections
We study the problem of counting the total number of affine solutions of a system of n binomials in n variables over an algebraically closed field of characteristic zero. We show that we may decide in polynomial time if that number is finite. We give a combinatorial formula for computing the total n...
Guardado en:
Autores principales: | Cattani, E., Dickenstein, A. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0885064X_v23_n1_p82_Cattani https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0885064X_v23_n1_p82_Cattani_oai |
Aporte de: |
Ejemplares similares
-
Counting solutions to binomial complete intersections
por: Cattani, E., et al.
Publicado: (2007) -
Counting solutions to binomial complete intersections
por: Cattani, E., et al. -
Counting solutions to binomial complete intersections
por: Cattani, Eduardo H.C., et al.
Publicado: (2007) -
Bounds for traces in complete intersections and degrees in the Nullstellensatz
por: Sabia, Juan Vicente Rafael, et al.
Publicado: (1995) -
Bounds for traces in complete intersections and degrees in the Nullstellensatz
por: Sabia, J., et al.