Range of semilinear operators for systems at resonance
For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T...
Guardado en:
Autores principales: | Amster, P., Kuna, M.P. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10726691_v2012_n_p_Amster_oai |
Aporte de: |
Ejemplares similares
-
Range of semilinear operators for systems at resonance
por: Amster, P., et al.
Publicado: (2012) -
Range of semilinear operators for systems at resonance
por: Amster, P., et al. -
Range of semilinear operators for systems at resonance
por: Amster, Pablo Gustavo
Publicado: (2012) -
Non-simultaneous blow-up in a semilinear parabolic system
Publicado: (2001) -
Non-simultaneous blow-up in a semilinear parabolic system
por: Quirós, F., et al.