Permutation entropy based time series analysis: equalities in the input signal can lead to false conclusions

"A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring values of a given data sequence, should be implemented before estimating the permutation entropy. Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attentio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zunino, Luciano, Olivares, Felipe, Scholkmann, Felix, Rosso, Osvaldo A.
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1766
Aporte de:
Descripción
Sumario:"A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring values of a given data sequence, should be implemented before estimating the permutation entropy. Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attention and treatment. In this work, we carefully study the effect that the presence of equalities has on permutation entropy estimated values when these ties are symbolized, as it is commonly done, according to their order of appearance. On the one hand, the analysis of computer-generated time series is initially developed to understand the incidence of repeated values on permutation entropy estimations in controlled scenarios. The presence of temporal correlations is erroneously concluded when true pseudorandom time series with low amplitude resolutions are considered. On the other hand, the analysis of real-world data is included to illustrate how the presence of a significant number of equal values can give rise to false conclusions regarding the underlying temporal structures in practical contexts."