Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: assessing experimental effects in a melanoma cell study
Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image ana...
Autores principales: | , , , , , , |
---|---|
Formato: | Artículo acceptedVersion |
Lenguaje: | Español |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | http://pa.bibdigital.ucc.edu.ar/4179/1/A_Fern%C3%A1ndez_Girotti_L%C3%B3pezdelOlmo_Llera_Podhajcer_Cantet_Balzarini.pdf |
Aporte de: |
id |
I38-R144-4179 |
---|---|
record_format |
dspace |
spelling |
I38-R144-41792025-04-28T14:47:44Z http://pa.bibdigital.ucc.edu.ar/4179/ Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: assessing experimental effects in a melanoma cell study Fernández, Elmer Andrés Girotti, María R. López del Olmo, Juan A. Llera, Andrea S. Podhajcer, Osvaldo Cantet, Rodolfo J. C. Balzarini, Mónica TA Ingeniería de asistencia técnica (General). Ingeniería Civil (General) Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of foldchanges and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. Results: We propose to identify DIGE DE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage. 2008-12-31 application/pdf spa http://pa.bibdigital.ucc.edu.ar/4179/1/A_Fern%C3%A1ndez_Girotti_L%C3%B3pezdelOlmo_Llera_Podhajcer_Cantet_Balzarini.pdf Fernández, Elmer Andrés ORCID: https://orcid.org/0000-0002-4711-8634 <https://orcid.org/0000-0002-4711-8634>, Girotti, María R., López del Olmo, Juan A., Llera, Andrea S., Podhajcer, Osvaldo ORCID: https://orcid.org/0000-0002-6512-8553 <https://orcid.org/0000-0002-6512-8553>, Cantet, Rodolfo J. C. and Balzarini, Mónica (2008) Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: assessing experimental effects in a melanoma cell study. Bioinformatics, 24 (23). pp. 2706-2712. ISSN 1460-2059 info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btn508 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion Fil: Fernández, Elmer Andrés. Universidad Católica de Córdoba. Facultad de Ingeniería; Argentina Fil: Girotti, María R. Laboratory of Molecular and Cellular Therapy; Argentina Fil: López del Olmo, Juan A. 4Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares; España Fil: Llera, Andrea S. Laboratory of Molecular and Cellular Therapy; Argentina Fil: Podhajcer, Osvaldo. Laboratory of Molecular and Cellular Therapy; Argentina Fil: Cantet, Rodolfo J. C. Laboratory of Molecular and Cellular Therapy; Argentina Fil: Balzarini, Mónica. Laboratory of Molecular and Cellular Therapy; Argentina info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
institution |
Universidad Católica de Córdoba |
institution_str |
I-38 |
repository_str |
R-144 |
collection |
Producción Académica Universidad Católica de Córdoba (UCCor) |
language |
Español |
orig_language_str_mv |
spa |
topic |
TA Ingeniería de asistencia técnica (General). Ingeniería Civil (General) |
spellingShingle |
TA Ingeniería de asistencia técnica (General). Ingeniería Civil (General) Fernández, Elmer Andrés Girotti, María R. López del Olmo, Juan A. Llera, Andrea S. Podhajcer, Osvaldo Cantet, Rodolfo J. C. Balzarini, Mónica Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: assessing experimental effects in a melanoma cell study |
topic_facet |
TA Ingeniería de asistencia técnica (General). Ingeniería Civil (General) |
description |
Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of foldchanges and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as
CyDye and gel effects, which could be important sources of noise while detecting treatment effects.
Results: We propose to identify DIGE DE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models.
First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment
effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution.
Its inclusion improved the detection of DE proteins in the second stage. |
format |
Artículo Artículo acceptedVersion |
author |
Fernández, Elmer Andrés Girotti, María R. López del Olmo, Juan A. Llera, Andrea S. Podhajcer, Osvaldo Cantet, Rodolfo J. C. Balzarini, Mónica |
author_facet |
Fernández, Elmer Andrés Girotti, María R. López del Olmo, Juan A. Llera, Andrea S. Podhajcer, Osvaldo Cantet, Rodolfo J. C. Balzarini, Mónica |
author_sort |
Fernández, Elmer Andrés |
title |
Improving 2D-DIGE protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
title_short |
Improving 2D-DIGE protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
title_full |
Improving 2D-DIGE protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
title_fullStr |
Improving 2D-DIGE protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
title_full_unstemmed |
Improving 2D-DIGE protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
title_sort |
improving 2d-dige protein expression analysis by two-stage
linear mixed models: assessing experimental effects in a
melanoma cell study |
publishDate |
2008 |
url |
http://pa.bibdigital.ucc.edu.ar/4179/1/A_Fern%C3%A1ndez_Girotti_L%C3%B3pezdelOlmo_Llera_Podhajcer_Cantet_Balzarini.pdf |
work_keys_str_mv |
AT fernandezelmerandres improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT girottimariar improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT lopezdelolmojuana improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT lleraandreas improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT podhajcerosvaldo improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT cantetrodolfojc improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy AT balzarinimonica improving2ddigeproteinexpressionanalysisbytwostagelinearmixedmodelsassessingexperimentaleffectsinamelanomacellstudy |
_version_ |
1832592476300378112 |